

Table of Contents

1. Product Information
1.1 Specifications & Performance 1 1.2 Temperature Limits 2 1.3 Dimensions 2 1.4 Bill of Materials 3
2. Installation 4
2.1 Precautions 4 2.2 Warnings 5 2.3 Advantages 5 2.4 Environment & System 5 2.5 Installation Instructions 6
3. Control & Monitoring 7
3.1 Shift Logic for Fiber-optic Pumps 8 3.2 Fiber Optic Stroke Detection Installation 9 3.3 Calibrating D10 Amplifier for Stroke Detection 9 3.4 Conductivity Leak Detection Installation 10 3.5 Fiber Optic Leak Detection Installation 10 3.6 Calibrating D10 Amplifier for Leak Detection 11
3.2 Fiber Optic Stroke Detection Installation 9 3.3 Calibrating D10 Amplifier for Stroke Detection 9 3.4 Conductivity Leak Detection Installation 10 3.5 Fiber Optic Leak Detection Installation 10
3.2 Fiber Optic Stroke Detection Installation 9 3.3 Calibrating D10 Amplifier for Stroke Detection 9 3.4 Conductivity Leak Detection Installation 10 3.5 Fiber Optic Leak Detection Installation 10 3.6 Calibrating D10 Amplifier for Leak Detection 11
3.2 Fiber Optic Stroke Detection Installation 9 3.3 Calibrating D10 Amplifier for Stroke Detection 9 3.4 Conductivity Leak Detection Installation 10 3.5 Fiber Optic Leak Detection Installation 10 3.6 Calibrating D10 Amplifier for Leak Detection 11 4. Ordering Instructions 12

Dear valued customer.

Thank you for purchasing a White Knight PFU140 pump.

Our dedicated team designs products to meet your exacting specifications with a demonstrated commitment to quality that goes beyond mere words and fancy slogans.

Our patented designs offer a variety of size and material options to meet stringent requirements of high-pressure chemical delivery systems, hightemperature re-circulation processes, chemical reclaim and bulk transport applications, slurry systems, and more. Our safe, reliable products offer superior performance, optimized efficiency, and simplified maintenance.

White Knight is able to provide the highest quality fluid handling products through controlled, consistent in-house engineering and manufacturing. Through continued significant investments in engineering and manufacturing, we lead the industry with new technologies and products.

White Knight has received numerous awards for innovation and manufacturing programs. We rigorously manage our quality assurance processes to ensure consistency and reliability. Our quality controls include strict cleanliness procedures and consistent manufacturing processes. For example, high-purity product assembly, testing, and packaging is performed in a Class 100 cleanroom.

Please peruse this manual before installing your White Knight product. It details installation requirements and setup instructions, and provides additional information and accessories for enhanced functionality.

Our team has gone to great lengths to ensure our products serve your needs and meet your requirements.

Further, we provide the highest quality products at the best value, and we back them up with excellent warranties and world class support.

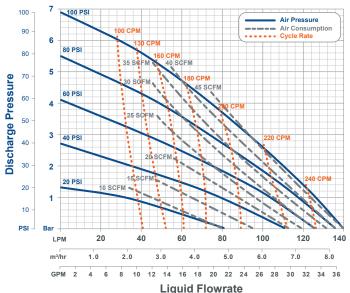
Thank you for your confidence and trust in White Knight products.

Sincerely,

Tim White, CEO White Knight Fluid Handling

1. Product Information

1.1 Specifications & Performance


Model		PFU140		
Max Flow Rate*		139.8 lpm (36.93 gpm)		
	placement Cycle*	0.5 liters (0.132 gal)		
Сус	les per min	253 max		
Air	Connection	3/8 in		
Wei	ght	20.4 kg (45 lb)		
Suc	tion Lift*	1 m (3 ft)		
Sound	Pressure**	77.9 dB(a) at 100 psi 50 CPM 79.56 dB(a) at 100 psi max CPM		
Sou	Power**	73.78 dB(a) at 100 psi 50 CPM 76.1 dB(a) at 100 psi max CPM		

^{*} May vary by configuration or system. Suction lift diminishes over time. Recommended installation level less than 3 ft above source. To calculate displacement, divide flow rate by CPM. ** Sound measured in accordance with ISO9614-2:1997.

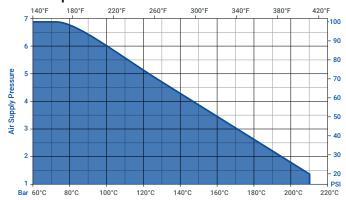
Max Fluid Temperature	210°C (412°F)
Environmental Temperature	min: 0°C (32°F) max: 50°C (122°F)
Max Supply Air Pressure	7 Bar (100 psi)
Min Startup Air Pressure	1.4 bar (20 psi)
Fluid Path Materials	PTFE, PFA
Non-Fluid Path Materials	PTFE, PFA

Stroke Detection	Fiber optic with or without D10 sensor
Leak Detection	Fiber optic with or without sensor, or conductivity
Electronic Control	CPC, CPT, or custom. Call for details.

PFU140 Performance

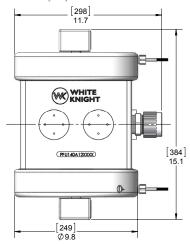
How to Read Charts Draw a horizontal line at your discharge pressure

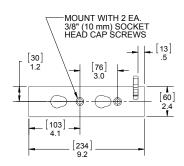
and vertical line at desired flow rate. At line intersect. estimate required air pressure, resultant cycle rate and air consumption.

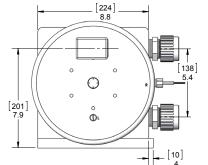

Example

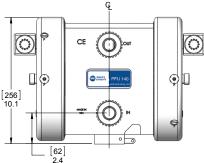
At 2 Bar (30 psi) discharge pressure and 80 psi supply pressure, PFU140 pumps provide 96 lpm (25.5 gpm) flow rate. They would cycle at ~213 CPM and exhaust 36 SCFM of air.

*Graph is for reference only. Performance was measured utilizing 1/2 in (3/8 in ID) air line and 1-1/4 in (1-1/8 in ID) liquid lines with 1 ft flooded suction. Performance may vary in your system.



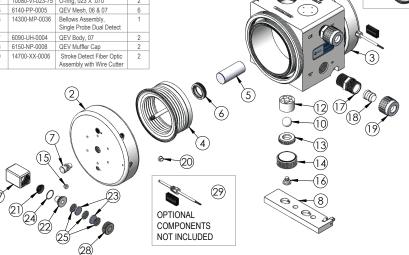

1.2 Temperature Limits

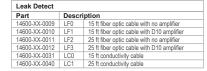



1.3 Dimensions

Dimensions in [mm] in

1.4 Bill of Materials


Item	Part	Description	Qnty
1	1125-TE-0022	Pump Body	1
2	2127-TE-0039	Head, Right	1
3	2127-TE-0040	Head, Left	1
4	14300-MP-0029	Bellows Assembly, Dual Probe Single Detect	2
5	14320-PF-0003	Shaft	1
6	5143-MP-0005	Seal, Shaft	2
7	8100-PF-0002	End Cap, Single Probe Dual Detect	2
8	14200-TE-0004	Base Plate Assembly	1
9	4142-MP-0007	Top Check Seat	2
10	4100-MP-0003	1-1/8" Check Ball	4
11	4140-TE-0007	Top Check Plug	2
12	4137-TE-0003	Check Cage	2
13	4135-MP-0009	Check Seat	2
14	4139-TE-0006	Bottom Check Plug	2
15	10040-TE-0003	Plug, Npt, 1/4"	2
16	10010-TE-0018	Base Plate Mount Screw	2
17	7400-TE-0007	1" Fitting S-300® Body	2
18	7400-PF-0003	1" Fitting S-300® Insert	2
19	7400-PF-0007	1" Fitting S-300® Nut	2
20	10040-TE-0006	Plug, 5/8", .300"	2
21	3200-VI-0002	Diaphragm, Ø 1.190	2
22	6150-UH-0002	QEV Exhaust Seat	2
23	6140-FP-0001	QEV Baffle Porous Poly	4
24	10080-VI-023-75	O-ring, 023 X .070	2
25	6140-PP-0005	QEV Mesh, 06 & 07	6
26	14300-MP-0036	Bellows Assembly, Single Probe Dual Detect	1
27	6090-UH-0004	QEV Body, 07	2
28	6150-NP-0008	QEV Muffler Cap	2
29	14700-XX-0006	Stroke Detect Fiber Optic Assembly with Wire Cutter	2


Fittings (Type, Size, Option)			Assemblies	Body Inlet Only (Nut not included)
Flaretek	1/2 in.	F08	14510-PF-0011	7200-PF-0015
Compatible	3/4 in.	F12	14510-PF-0008	7200-PF-0009
	1 in.	F16	14510-PF-0009	7200-PF-0010
0	1-1/4 in.	F20	14510-PF-0010	7200-PF-0011
Pillar S-300	1/2 in.	P08	14530-PF-0011	7400-TE-0019
0	3/4 in.	P12	14530-PF-0006	7400-TE-0006
TO COME	1 in.	P16	14530-PF-0007	7400-TE-0007
6	1-1/4 in.	P20	14530-PF-0008	7400-TE-0008
	1-1/2 in.	P24	14530-PF-0026	7400-TE-0035
Synchro-	1/2 in.	S08	TBD	7010-TE-0008
Flare	3/4 in.	S12	14520-TE-0008	7010-TE-0007
Flare	1 in.	S16	14520-TE-0007	7010-TE-0009
	3/4 in.	L12	14570-PF-0006	7800-TE-0006
PrimeLock	1 in.	L16	14570-PF-0007	7800-TE-0007
	1-1/4 in.	L20	7800-PF-0008	7800-TE-0008

Fittings (T	Assemblies		
Tube Out	3/4 in.	T12	7120-PF-0007
Q _A	1 in.	T16	7120-PF-0008
	1-1/4 in.	T20	7120-PF-0009
~	1-1/2 in.	T24	7120-PF-0010
Weldable	3/4 in.	W12	7300-PF-0005
	1 in.	W16	7300-PF-0006
FNPT	3/4 in.	N12	7100-TE-0009
0	1 in.	N16	7100-TE-0005
	1-1/4 in.	N20	7100-TE-0010
Plugged		B00	7130-TE-0005

OPTIONAL COMPONENT USE WITH SINGLE PROBE STROKE DETECT

(26)

Stroke Detect					
Part	Descr	iption			
14700-XX-0021	SFS0	15 ft fiber optic cable with no amplifier SFS0			
14700-XX-0022	SFS1	15 ft fiber optic cable with D10 amplifier SFS1			
14700-XX-0023	SFS2	25 ft fiber optic cable with no amplifier SFS2			
14700-XX-0024	SFS3	25 ft fiber optic cable with D10 amplifier SFS3			
14700-XX-0025	SFD0	15 ft fiber optic cable with no amplifier SFD0			
14700-XX-0026	SFD1	15 ft fiber optic cable with D10 amplifier SFD1			
14700-XX-0027	SFD2	25 ft fiber optic cable with no amplifier SFD2			
14700-XX-0028	SFD3	25 ft fiber optic cable with D10 amplifier SFD3			

2. Installation

2.1 Precautions

Do NOT lift pump by fiber optic cables, quick exhaust valves nor air tubing.

PFU140 pumps must be installed in an upright position. The check valves are actuated by gravity and/or flow, and they will not seat if the pump is not upright.

PFU140 pumps require an end of stroke detection mechanism (pressure switch) to prevent over stroking in timer mode. Operating a PFU140 in timer mode without stroke detection will void the pump warranty.

PFU140 pumps require 3/8 in minimum orifice with unrestricted air flow.

PFU140 pumps require a 3 Cv solenoid. Using a reduced Cv will reduce flow rates. Using a valve with more than 20% greater Cv will change operating parameters, reduce pump life and void the warranty.

PFU140 pumps operate erratically or stall when air supply is insufficient. Ensure use of air supply pressures higher than averaged air consumption lines in performance charts. Air supply lines and fittings must meet minimal inner diameter requirements shown in the installation instructions.

Operating PFU140 pumps ~35% below max air pressure may significantly extend pump life. PFU140 pumps require 20 psi minimum air pressure. Operation above 7 Bar (100 psi) may damage the pump and void the warranty.

PFU140 pumps have an initial suction lift capacity of 3 ft. For best results minimize suction lift.

PFU140 liquid ports are not NPT nor any other standard. Use of connectors other than those supplied by White Knight will damage the pump and void the warranty.

PFU140 pumps may be controlled by closing liquid outlet lines. However, restricting liquid supply lines increases wear and should be avoided. Do NOT pump against a closed liquid inlet. It will damage the pump and void the warranty.

PFU140 pumps use the pumped liquid to lubricate their shafts. The pumps will cycle faster and wear more than normal when run dry, which may cause damage and loss of self-prime abilities. PFU140 pumps should not be run dry after startup and are not warrantied under dry run conditions

Air supply pressure to PFU140 pumps should be at least ten psi higher than the liquid line pressure when using a pulsation dampener. Failure to do so may cause erratic operation.

PFU140 pumps use porous material that may retain chemicals. Take precautions to avoid cross contamination.

2.2 Warnings

Pressurized Material

Pumps in use contain pressurized materials. Eliminate liquid and air pressure via shut off valves before pump is serviced or removed from the system.

High Temperature

Heat may transfer to exterior surfaces when pumps operate with high temperature fluids. Avoid direct contact with the pump when high temperature fluids are present.

Hazardous Chemical

Use appropriate personal protective equipment when handling pump. Reference Material Safety Data Sheet (MSDS) for information specific to your chemicals.

Loud Noise

Pump exhaust air contributes to work area noise levels. Only operate pumps with approved muffler media, and use ear protection in noisy conditions.

2.3 Advantages

Head Pressure / Dead-Head

PFU140 pumps can be controlled by adjusting their liquid outlet pressures and can be installed with head pressures up to dead-head (e.g. equal liquid and air pressures) with no damage to the pump.

Thermal Cycling

PFU140 pumps require no maintenance when operated within their performance range, even in thermal cycling applications.

2.4 Environment & System

Oversized Inlet Line

Pumps operate optimally with liquid inlet lines larger than the liquid outlet lines. This reduces strain on the bellows and may reduce pulsation in the pump outlet.

Clean Supply Air (CDA)

PFU140 pumps require use of Class 2 air for particles and moisture per ISO 8573-1. Use 10 micron filter; maintain -40°C dew point. A point-of-use filter is recommended during first six months of operation in new fabs/systems due to high risks of debris that can damage pumps and void warranty.

Flammable Solvents

PFU140 pumps are not constructed from conductive materials. System that pump flammable solvents should be properly grounded to avoid ignition by static charge. A River's Edge test of isolative pumps with flammable liquids indicated that liquids must be grounded and other procedures should be followed. Copy of test available.

Pumping Liquids Near Boiling Point

Minimizing suction lift reduces pulsation and the potential for boiling or outgassing of liquid in the inlet of the pump. Although reciprocating pumps can pull suction lift, pump performance and life increase when suction lift is minimized or eliminated.

Abrasive Slurry

Pumping abrasive slurry may accelerate wear of components. PFU140 pumps are warrantied when used with slurry. However, normal wear is not covered by warranty.

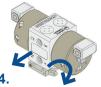
Environmental Temperature

PFU140 pumps are rated for 0°C (32°F) - 50°C (122°F) environmental temperatures. Do not freeze fluid in pump. Operation below 0°C may accelerate wear. Normal wear is not covered by warranty.

D10 amplifier must be calibrated before attaching fiber optic probes to the pump.

2.5 Installation Instructions

Set lever to up position. Slide base plate forward or pump body backward.



Lift pump off of base plate.

Pull-back dismount is standard. See steps 3.1-3.3 for forward dismount.

Screw base plate to surface with 3/8 in or 10 mm head cap socket screws into predrilled holes.

Set pump on base knobs: slide it forward. Set lever to down position.

Insert fiber-optics fully into heads. Push in ferrule and gripper; hand-tighten nut.

Attach fittinas to pump. Tighten to 80 inch-lbs.

Attach tubes and fittings per manufacturer instructions. Use backer wrench to hold fittings in place at pump.

Set air line via 3/8 in FNPT ports on quick exhaust valves. Line must be 3/8 in minimum orifice.

Push-Forward Dismount **Configuration Setup**

Replace step 4 with steps 3.1-3.3 to re-configure the base plate to pushforward dismount.

Move knobs to opposite sides.

Set pump on base knobs; slide it backward.

Move lever down to locked position.

Install with Rigid Base Plate *Requires push-forward dismount configuration (steps 3.1-3.3)

Remove L bracket. Set lever in neutral (up) position.

Slide pump forward; lift it off base plate.

Fix base plate to work station. See step 4 above.

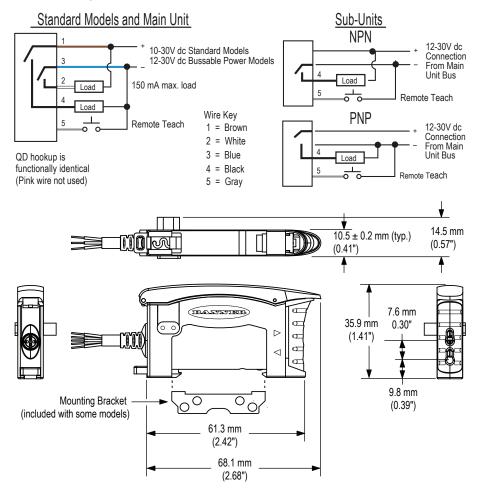
Move lock lever to down position.

Return pump to Reattach L bracket. Tighten to 12 in-lb. base plate.

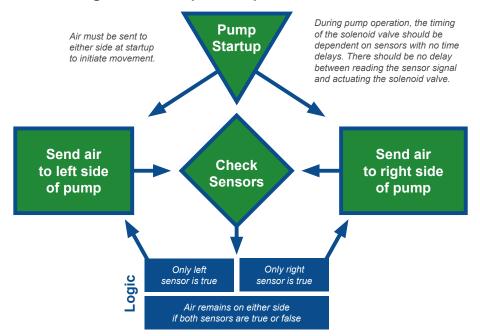
Liquid Inlet/Outlet

Liquid ports are not NPT nor any other standard. Use of connectors other than those supplied by White Knight will damage the pump.

3. Control & Monitoring

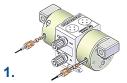

Programmable Control

White Knight CPT-1 controllers monitor and adjust run mode, flow rate, leak detection and other pump operations.



D10 Amplifier Electrical Hookups & Dimensions

White Knight recommends Expert™ D10 amplifier for use with fiber optic stroke and leak detection assemblies.



3.1 Shift Logic for Fiber-optic Pumps

3.2 Fiber Optic Stroke Detection Installation

For standard end stroke, follow steps for both sides of the pump. For single-probe dual-detect, follow steps for only the left side.

Insert fiber optic probes fully into heads. Push in ferrule and gripper; hand-tighten nut.

Open the top and slide the front face of the D10 up. Press the fiber optic ends into the holes on its front. Slide the face down to lock cables in place.

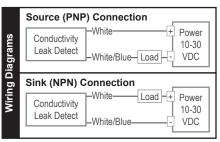
3.3 Calibrating D10 Amplifier for Stroke Detection

When calibrating the D10 Amplifier for stroke detection, the pump should be in the same operating conditions it will be in during normal operation (i.e. supply air pressure, back pressure, etc.). The Fiber Optic must be installed as per the instructions in section 3.1.

Calibration	Calibration:					
	Push Button	Remote Line	Result			
Access Dynamic TEACH Mode	Press and hold dynamic push button >2 seconds.	Hold Remote line low (to ground) >2 Seconds.	Power LED: OFF Output LED: OFF Bar graph: LO & DO Alternately Flashing			
TEACH Sensing Conditions	• Hold push button. • Operate pump normally for 15 seconds.	Hold remote line low (to ground). Operate pump normally for 15 seconds.	Power LED: OFF Output LED: OFF Bar graph: LO & DO Alternately Flashing			
Return to	Release button	Release remote line/switch	Teach Accepted Power LED: ON Bar graph: One LED flashes to show relative contrast (successful setup requires minimum value of 4). Sensor returns to Run Mode with new settings.			
Run Mode			Teach Unaccepted Power LED: OFF Bar graph: #1, 3, 5, 7 alternately flash to show failure to sense. Sensor returns to Run mode without changing settings. Set up again if value shows <4.			

Upon completion of a successful learning cycle, the D10 Amplifier will continuously learn and self-teach to maintain the same cycle rate count readings.

3.4 Conductivity Leak Detection Installation

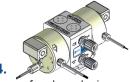

Leaks are identified if conductive fluid contacts a sensor. Sensor provides a Sink (NPN) or Source (PNP) signal, depending on the wire setup. See the wiring diagrams below.

Conductive leak detection does not qualify for use in explosion-proof environments. Conductive fluid required.

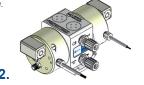
Remove leak adapter from assembly.

Replace NPT plug in "L" port with probe. Hand Tighten. Attach cable to signal translator (e.g. PLC).

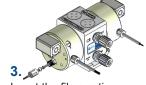
3.5 Fiber Optic Leak Detection Installation


D10 amplifier must be calibrated before attaching fiber optic probes to the pump. Fiber optic sensors can melt if used at >130°C (266°F), causing leak detect failure.

See below for elbow out configuration.



T.


Remove leak adapter and leak detect probe from fiber optic assembly.

Lower ferrule and gripper until snug against the probe. Hand tighten female gripper nut.

For straight out configuration replace NPT plug in "L" port with the probe. Hand-tighten.

Insert the fiber optic cable until it contacts the bottom of the probe.

Open the top and slide the front face of the D10 up. Press the fiber optic ends into the holes on its front. Slide the face down to lock cables in place.

Replace NPT plug in "L" port with elbow adapter.

Fiber optic Conductivity

Attach fiber optic or conductivity leak detect probe per instructions above.

1.1

1.2

3.6 Calibrating D10 Amplifier for Leak Detection

Step 1: I	Step 1: Power On D10 Amplifier & Set "Dark Operate" Mode:				
	Push Button	Remote Line	Result		
	0.04 s ≤ "Click" ≤ 0.8 s	$0.04 \text{ s} \le T \le 0.8 \text{ s}$			
Access Setup Mode	Press and hold both buttons > 2 seconds.	Double-pulse remote line	Green Power LED turns OFF. Output LED remains active. Icons continue to display current setup. Bargraph turns OFF.		
Select Settings	Press either button until LEDs show desired settings.	Pulse the remote line until LEDs show desired settings. Tote: Double-pulsing remote line causes setting to "back up" one step.	Sensor toggles through these setting combinations: LO - Normal Speed - No Delay (default) DO - Normal Speed - No Delay LO - High Speed - No Delay DO - High Speed - No Delay LO - Normal Speed - Delay DO - Normal Speed - Delay LO - High Speed - Delay DO - High Speed - Delay DO - High Speed - Delay DO - High Speed - Delay		
Return to Run Mode	Press and hold both buttons >2 seconds.	Hold remote line low > 2 seconds. > 2 seconds	Green Power LED turns ON. Sensor returns to Run mode with new settings.		

Step 2: /	Step 2: Access "Single-Point Dark Set" Mode						
	Push Button	Remote Line	Result				
	0.04 s ≤ "Click" ≤ 0.8 s	$0.04 \text{ s} \le T \le 0.8 \text{ s}$					
Access Set Mode	Press and hold static button > 2 seconds.	Single-pulse remote line	Power LED: OFF. Output LED: ON (push button) OFF (remote line) Static LEDs: LO & DO alternately flashing				

Step 3: Set Sensing Condition

Set condition to "leak detection" sensing while probe tip is submerged in liquid. Then, remove the leak probe from liquid and reinserted into the "L" port. Amplifier will now signal when moisture if detected on the probe tip.

	Push Button	Remote Line	Result	
	$0.04 \text{ s} \le \text{``Click''} \le 0.8 \text{ s}$	$0.04 \text{ s} \le T \le 0.8 \text{ s}$		
y Condition	Present sensing condition Five-click static button	Present sensing condition • Five-pulse remote lne	Power LED: ON. Output LED: ON (push button) OFF (remote line) Bargraph: 4 indicators flash. Sensor returns to Run mode with new set	or
Set Sensing	- +		Power LED: ON. Output LED: ON (push button) OFF (remote line) Bargraph: #1, 3, 5, 7 flash for failure. Sensor returns to Set sensing condition.	or

4. Ordering Instructions

Required (Default Model) Additional Options (Blank if not needed)

 $\frac{\mathbf{PFU140}}{1} = \frac{-\mathbf{F16}}{3} \quad \mathbf{II} - \frac{\mathbf{LF0}}{4} - \frac{\mathbf{SFD0}}{5} - \frac{\mathbf{TF16}}{6} - \frac{\mathbf{FF0}}{6} = \frac{-\mathbf{FF0}}{6} = \frac{-\mathbf$

Options 1-3 are required. Leave Additional Options blank if not desired. Only add Outlet if different than Inlet.

Default options are highlighted

1. Pump Model			
Standard	PFU140		

2. Check Ball Material		
PTFE Check balls	blank	
PFA Check balls	F	

3. Inlet Fitting

Front straight only Flaretek 1/2 in. F08 Compatible F12 3/4 in. F16 1 in. 1-1/4 in F20 3/4 in T12 Tube Out 1 in T16 1-1/4 in. T20 T24 1-1/2 in. Weldable 3/4 in W12 1 in W16 Pillar S-300 1/2 in P08 0000 P12 3/4 in. P16 1 in. P20 1-1/4 in. 1-1/2 in P24 **FNPT** 3/4 in N12 1 in N16 1-1/4 in. N20 1/2 in. S08 Synchro-Flare S12 3/4 in. S16 1 in PrimeLock 3/4 in 112 TOQ/ L16

1-1/4 in.

L20

4. Leak Detection		
No leak detection	blank	
15 ft fiber optic cable with no amplifier	LF0	
15 ft fiber optic cable with D10 amplifier	LF1	
25 ft fiber optic cable with no amplifier	LF2	
25 ft fiber optic cable with D10 amplifier	LF3	
15 ft conductivity cable	LC0	
25 ft conductivity cable	LC1	

5. Stroke Detection		
No stroke detection	blank	
DUAL PROBE OPTIONS		
15 ft fiber optic cable with no amplifier	SFD0	
15 ft fiber optic cable with D10 amplifier	SFD1	
25 ft fiber optic cable with no amplifier	SFD2	
25 ft fiber optic cable with D10 amplifier	SFD3	
SINGLE PROBE, DUAL DETECT OPTIONS		
Single probe, dual detect, no fibers	SFS	
15 ft fiber optic cable with no amplifier	SFS0	
15 ft fiber optic cable with D10 amplifier	SFS1	
25 ft fiber optic cable with no amplifier	SFS2	
25 ft fiber optic cable with D10 amplifier	SFS3	

* Fiber optic cables ordered separately. Fiber optics are required for operation. Standard configuration includes dual probe WITHOUT fibers. See stroke detection options to order fiber optic cables or single probe option.

Timer mode operation requires end-of-stroke detection. Use of timer mode without stroke detection voids the warranty.

Operating the pump without the included quick exhaust valves (QEVs) voids pump warranty. Customers may use their own QEVs with the optional NPT adapter.

6. Outlet F Straight on Select Top	ly.	Front	Тор
Same as Inlet		blank	n/a
Flaretek	1/2 in.	FF08	TF08
Compatible	3/4 in.	FF12	TF12
0	1 in.	FF16	TF16
0	1-1/4 in.	FF20	TF20
Tube Out	3/4 in.	FT12	TT12
	1 in.	FT16	TT16
	1-1/4 in.	FT20	TT20
	1-1/2 in.	FT24	TT24
Weldable	3/4 in.	FW12	TW12
	1 in.	FW16	TW16
Pillar S-300	1/2 in.	FP08	TP08
Timal 0-300	3/4 in.	FP12	TP12
	1 in.	FP16	TP16
	1-1/4 in.	FP20	TP20
	1-1/2 in.	FP24	TP24
FNPT	3/4 in.	FN12	TN12
0	1 in.	FN16	TN16
	1-1/4 in.	FN20	TN20
Synchro- Flare	1/2 in.	FS08	TS08
	3/4 in.	FS12	TS12
	1 in.	FS16	TS16
PrimeLock	3/4 in.	FL12	TL12
Timozook	1 in.	FL16	TL16
	1-1/4 in.	FL20	TL20

Revision

No revision

blani

Contact support for revision level or copy exact code activation details. Configured part numbers are not Copy Exact Part Numbers. support@wkfluidhandling.com

5. Pump Service

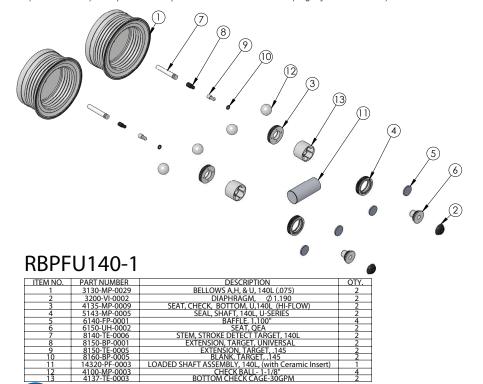
Pumps fully rebuilt by White Knight, certified rebuilders, or technicians certified by White Knight receive full warranty renewal. Details below.

White Knight Rebuilds

Request factory rebuilds by web form at: https://wkfluidhandling.com/support/rma/. An RMA# will be provided after processing.

*Customers must follow decontamination instructions in Section 4.4 when returning a pump to White Knight.

Certified Rebuilders


White Knight's global network of certified rebuilders expedite rebuild turn-around time and minimize shipping costs. Find certified rebuilders at: https://wkfluidhandling.com/rebuilders/

Rebuild Pump as Certified Technician

White Knight offers trainings to certify technicians to rebuild pumps. Technicians who pass the training are issued a two-year certification. During the two years, parts in pumps rebuilt by the technician receive a full warranty. See: https://wkfluidhandling.com/virtual-rebuilds/

5.1 Rebuild Kits & Parts

Rebuild kit for PFU140 is RBPFU140-1. To request rebuilds by White Knight, use RBPFU140-5 (labor included). Pump rebuilds require tool kit: 12200-XX-0027 (Legacy# PFU140-170).

5.2 Return Pump for Service

Follow decontamination instructions when returning a pump for service.

DO NOT REMOVE PAGE FROM MANUAL.

Copy page from manual or download at https://wkfluidhandling.com/support/rma/.

Decontamination Instructions

PRINT COMPLETED DECONTAMINATION CERTIFICATION. IT MUST BE INCLUDED IN YOUR RMA SHIPMENT.

White Knight products are designed for use with caustic and otherwise dangerous liquids. Handle every product as if it contains dangerous chemicals whether or not it actually does.

- · Only those with adequate safety training should attempt to handle used pumps.
- · Wear adequate safety gear appropriate for chemicals that have been in the pump.
- · Review relevant Material Safety Data Sheets (MSDS) before handling the pump.
- · Review emergency numbers for use in event of an accident.
- Prepare Ph papers, showers, antidotes, clean-up equipment, neutralizers, and other safety devices used to detect. neutralize or minimize effects of chemicals described in appropriate MSDS documents.

Rinse with DI Water

Circulate DI water through pump for twenty minutes before disassembly and/or double bagging for shipment. If pump is nonfunctional, force DI water from inlet through outlet for 40 minutes before shipment preparations.

Remove Pump from Station:

- Disconnect liquid tubing connectors from front of pump (opposite shuttle valve).
- Plug NPT fittings with PTFE plug, Flare fittings with flare nose cover and cap, or other plug or cap as recommended by connector supplier.
- 3. Disconnect air supply tubing from face of shuttle valve.
- 4. Loosen mount screw from base plate. (Note: do not remove screw from base plate).
- Remove base plate using proper tool for the fastening devices (e.g. Allen wrench or screw driver).
 Note: Base plate may stay if needed for replacement pump to be used.
- 6. Return all removed parts to the pump.

Return Pump to White Knight:

- 1. Rinse pump with DI water as described above after removing it from its station.
- 2. Drain remaining DI water from the pump inlet and outlet liquid tubing connectors.
- 3. Plug liquid outlets as described in the Remove Pump from Station section above.
- 4. Dry the pump, double bag it, and seal it in thick polyethylene bags.
- 5. Return the pump to its original packaging.
- 6. Include MSDS for the chemical that the pump was handling in the box with the pump.
- 7. Obtain RMA number from White Knight and write it on the outside of the box.
- 8. Ship to White Knight following all rules, regulations and laws regarding shipment of dangerous materials. Ship freight pre-paid. No collect shipments will be accepted. Unauthorized use of White Knight shipping accounts will result in the adding of freight to the bill in addition to a service charge.

Include All Pump Components:

Pumps returned to White Knight for evaluation, service or repair must be complete with all components, including but not limited to base plate, mount screws, tubing connectors, tubing connector caps, flare noses, shuttle valves, mufflers, and tubing. Missing parts will be added to the pump and charged to the customer.

DO NOT REMOVE PAGE FROM MANUAL.

Copy page from manual or download at https://wkfluidhandling.com/support/rma/.

<u> Decontamination Certification</u>

COMPLETE AND PRINT THIS FORM. IT MUST BE INCLUDED IN YOUR RMA SHIPMENT. I, the undersigned employee of decontamination and safety procedures described in Decontamination Instructions section have been followed for return of product below. (We cannot process returns without an RMA number.) (We cannot process returns without a product serial number.) Metal Exposure: (Check all that apply. Write in other metals if necessary.) Product was used in a Metal Process. ■ Yes ■ No Product was used in a Copper Metal Process. Yes ■ No Product was used with: ■ Cobalt ■ Gold ■ Lead ■Nickel ■ Platinum ■Silver ■Tin ■Titanium ■ Aluminum ■ Zinc ■ Tungsten Other: Chemical Exposure: (Check all that apply. Write in other chemicals if necessary.) Product was <u>NOT</u> used in chemicals (DI Water only). Product was used in chemicals. ■Hydrofluoric Acid ■Hydrogen Peroxide ■ IPA ■ Ammonia ■ Ammonium Hydroxide ■Hydrochloric Acid ■ Nitric Acid
■ Phosphoric Acid Other: ■ Sulfuric Acid Shipping Information: Please indicate metal processes to which the product has been exposed by clearly and conspicuously labeling the outside of the return package with the metal. Products exposed to Metal Processes Products NOT exposed to Metal Processes must be sent to the following address: must be sent to the following address: White Knight Fluid Handling White Knight Fluid Handling 187 East 670 South, Suite B 187 East 670 South, Suite C Kamas, UT 84036 Kamas, UT 84036 Signature: _ Date: _

6. Warranty

White Knight follows strict manufacturing, assembly and testing procedures to ensure consistency and reliability.

White Knight warrants PFU140 pumps and components are free from defects in materials and workmanship for two years from our shipment date or your installation date if provided within 90 days of shipment from our facility.

Failures due to normal wear, misuse, abuse or unauthorized disassembly nullify this warranty.

White Knight does not guarantee the suitability of products for specific applications. White Knight is not liable for any damage or expense resulting from use or misuse of its products in any application. Responsibility is limited solely to repair or replacement of defective products or components.

Prior written, faxed or emailed approval must be obtained from White Knight before returning any product or component for warranty consideration. All determinations regarding cause of failure are made by White Knight, and all decisions regarding warranty fulfillment or nullification are made by White Knight.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, INCLUDING ANY GUARANTEE OF SUITABILITY FOR ANY PURPOSE. NO VARIATIONS OF THIS WARRANTY SHALL BE HONORED NOR CONSIDERED LEGALLY BINDING, EXCEPT WRITTEN AGREEMENTS SIGNED BY THE CEO OF WHITE KNIGHT FLUID HANDLING.

Tim White, CEO White Knight Fluid Handling

Accessories

See ordering instructions or contact us for details.

Stroke Detection

- Fiber Optic stroke detection with or without sensor
- · Solid state pressure switch
- · Solid state dual pressure switch

Leak Detection

- Fiber Optic leak detection with or without sensor
- · Conductivity leak detection

CPT-1

· Control/monitor run mode and flow rate.

Catcher™ Pre-Filters

- · In-line and pump-mounted options
- · Large through holes to avoid loading
- Filter may be removed without removing the Catcher™ from the pump or the line.
- Pumps damaged by passing solids that use a Catcher™ are repaired as in warranty.

Filter Housing

- 100% non-metallic
- Allows for filter changing without disconnecting the inlet/outlet lines
- Rated for temperatures up to 210°C
- Install with industry standard connections
- Designed to allow for thermal cycling
- Upright and inverted installation options

Quick Exhaust Valves

- Allows for immediate escape of exhaust air reducing pulsation and exposure of solenoid valve to corrosive fumes
- · In-line and pump-mounted options
- UHMW-PE design
- Comes standard with a one-year warranty

Pulse Dampeners

- Uses same CDA as supplied to pump
- · In-line and pump-mounted options
- Sizes available for all PFU Series pumps
- Self-adjusting, Auto-Level Valve is regulated by liquid line pressure

CERTIFICATE & DECLARATION OF CONFORMITY FOR CE MARKING

Company contact details:

White Knight Fluid Handling Inc. 187 E. 670 S., Kamas, Utah, 84036, USA

White Knight Fluid Handling Inc. declares that their:

Bellows Pump Line

PSA030, PSA060, PSA140, PSH030, PSH060, PSH140, PSU030, PSU060, PSU140, PSA015, PSR050, PSR025, PFA030, PFA060, PFA140, PFH030, PFH060, PFH140, PFU030, PFU060, PFU140, PXA030, PXA060, PXA140, PXH030, PXH060, PXH140, PXU030, PXU060, PXU140, PFA015, LHA015, LHA030, LHA070

Diaphragm Pump Line (Non Conductive)

PSD04TE, PSD06TE, PSD08TE, PSD16TE, PSD24TE, PSD04UH, PSD06UH, PSD08UH, PSD16UH, PSD24UH, PSB100

Diaphragm Pump Line (Conductive)

PSD04TC, PSD06TC, PSD08TC, PSD16TC, PSD24TC, PSD04UC, PSD06UC, PSD08UC, PSD16UC, PSD24UC

Legacy Pump Line

PLS30, PLS60, PLS120, PLX30, PLX60, PLX120, PX30, PX60, PX120, PLF30, PLF60, PLF120

Metering Pumps PPM100, PEM100, PEM050

Plastic Pumps PHC40-2, PPMC300, PPMA

TPA07 Pressure Transducer

are classified within the following EU Directives as applicable:

Machinery Directive 2006/42/EC Low Voltage Directive 2014/35/EU Electromagnetic Compatibility Directive 2014/30/EU RoHS 2 Directive 2011/65/EU

and further conform with the following EU Harmonized Standards as applicable:

EN 809:1998+A1:2009 EN 60204-1:2006 + A1:2009 EN 61000-6-2:2005 EN 61000-6-4:2007+A1:2011

Dated: 16 January 2017

Position of signatory: Product Manager Name of Signatory: Cory Ammon Simmons Signed below: on behalf of White Knight Fluid Handling Inc.

White Knight Support

187 E. 670 S. Kamas, UT 84036

Phone: 435.783.6040 Toll Free: 888.796.2476 Fax: 435.783.6128

support@wkfluidhandling.com

https://wkfluidhandling.com/support/

